Glutamic acid 286 in subunit I of cytochrome bo3 is involved in proton translocation.

نویسندگان

  • M L Verkhovskaya
  • A Garcìa-Horsman
  • A Puustinen
  • J L Rigaud
  • J E Morgan
  • M I Verkhovsky
  • M Wikström
چکیده

Glutamic acid 286 (E286; Escherichia coli cytochrome bo3 numbering) in subunit I of the respiratory heme-copper oxidases is highly conserved and has been suggested to be involved in proton translocation. We report a technique of enzyme reconstitution that yields essentially unidirectionally oriented cytochrome bo3 vesicles in which proton translocation can be measured. Such experiments are not feasible in the E286Q mutant due to strong inhibition of respiration, but this is not the case for the mutants E286D and E286C. The reconstituted E286D mutant enzyme readily translocates protons whereas E286C does not. Loss of proton translocation in the D135N mutant, but not in D135E or D407N, also is verified using proteoliposomes. Stopped-flow experiments show that the peroxy intermediate accumulates in the reaction of the E286Q and E286C mutant enzymes with O2. We conclude that an acidic function of the 286 locus is essential for the mechanism of proton translocation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamics of electron transfer in Escherichia coli cytochrome bo3.

The proton translocation mechanism of the Escherichia coli cytochrome bo3 complex is intimately tied to the electron transfers within the enzyme. Herein we evaluate two models of proton translocation in this enzyme, a cytochrome c oxidase-type ion-pump and a Q-cycle mechanism, on the basis of the thermodynamics of electron transfer. We conclude that from a thermodynamic standpoint, a Q-cycle is...

متن کامل

Oxygen and proton pathways in cytochrome c oxidase.

Cytochrome c oxidase is a redox-driven proton pump, which couples the reduction of oxygen to water to the translocation of protons across the membrane. The recently solved x-ray structures of cytochrome c oxidase permit molecular dynamics simulations of the underlying transport processes. To eventually establish the proton pump mechanism, we investigate the transport of the substrates, oxygen a...

متن کامل

Redox-driven proton pumping by heme-copper oxidases.

One of the key problems of molecular bioenergetics is the understanding of the function of redox-driven proton pumps on a molecular level. One such class of proton pumps are the heme-copper oxidases. These enzymes are integral membrane proteins in which proton translocation across the membrane is driven by electron transfer from a low-potential donor, such as, e.g. cytochrome c, to a high-poten...

متن کامل

Study of genetic diversity of Dussumieria acuta (Valenciennes, 1847) in Persian Gulf and Oman sea (Coast of the Hormozgan Province) using Cytochrome oxidase subunit I gene (COI)

In this study 12 specimens were collected from Bandar Jask, Qeshm Island and Bandare Lengeh in Hormozgan Province. DNA extraction was performed using Phenol-Chloroform method. A partial DNA sequence of Cytochrome oxidase subunit I gene (COI) was used to evaluate genetic diversity. The sequence of Cytochrome oxidase subunit I gene was done using specific primers designed based on sequences regis...

متن کامل

Glutamic acid 242 is a valve in the proton pump of cytochrome c oxidase.

Aerobic life is based on a molecular machinery that utilizes oxygen as a terminal electron sink. The membrane-bound cytochrome c oxidase (CcO) catalyzes the reduction of oxygen to water in mitochondria and many bacteria. The energy released in this reaction is conserved by pumping protons across the mitochondrial or bacterial membrane, creating an electrochemical proton gradient that drives pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 94 19  شماره 

صفحات  -

تاریخ انتشار 1997